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Formulation of the hydrodynamic problem of determining electrical effects in 
a moderately ionized gas surrounding conducting bodies is investigated in the 

case when the characteristic Debye radius is considerably smaller than the char- 

acteristic dimension of the body in the gas stream. A new statement of the 

problem is proposed which considerably simplifies its numerical, as well as an- 

alytical investigation. A method of separation is formulated which makes 

possible the determination of concentrations and diffusion fluxes of ionized com- 
ponents throughout the region occupied by gas, including the Debye layer, by 
solving the initial problem in a quasi-neutral formulation. The electric field 

throughout the volume of gas is then determined by the solution of a linear diff- 

erential equation with known coefficients, It is shown that in a particular re- 
gion of potentials of the body surface the solution obtained in this manner is 

uniformly valid. 

The one-dimensional problem of the electric probe in a weakly ionized 
three-component gas is investigated as an example. The method of separation 

applied to the considered problem yields linear equations for the concentration 
of charged particles and for the electric field. These equations are solved in 
quadratures. Explicit formulas are derived for linear sections of the ion and 

electron characteristics. 

The interpretation of measurements obtained by probes in dense plasma under var- 
ious conditions of flow around it has recently attracted considerable interest in hydro- 
dynamic problems related to the determination of electrical parameters around con- 

ducting bodies (see, e. g. , Cl -31. The hydrodynamic model is applicable through 
the whole volume occupied by an ionized gas on the fundamental assumption that the 
particle free path h is considerably shorter than all characteristic dimensions of the 

problem, in particular the Debye layer thickness & , and that the particle drift vel- 
ocity is considerably lower than the thermal velocity. The last condition means that 
the work of the electric field E over the particle free path is considerably smaller 

than that of heat energy kT , i. e. en e kT . In the considered here case of the 
Debye collision layer that condition is satisfied, at least, when the wall potentials 
are cp,-kT/e , since in that layer the electric field is of the order of E w cpu, I 

hd - kT / ehd. Taking into account the inequality h 4 hd we obtain eEA - e (kT 
/ eh& 4 kT. Note that condition cpW _ kT / e is satisfied in a fairly wide range 
of potentials. For instance, the saturation current on a probe in a weakly ionieed 
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Plasma is already reached at a potential of a few kT / e OII the body surface, 

The considered problem is nonlinear and, when the Debye radius is small in com- 

parison with the characteristic dimension of the body (which is uglally the case), it 

contains a Small parameter E eCpa1 to the square of the ratio ofthe characteristic &bye 
radius to the characteristic dimension of the body, This parameter appears at the term 
which defines the electric field in the Poisson equation. As shown in ~21, the direct 

numerical solution of a problem of this kind in the initial formulation presents, even in 
the simplest case, considerable difficulties. 

The transformation proposed here results in a considerable simplification of the nu- 

merical as Well as of the analytic investigation of this electrohydrodynamic problem, 
The transformation consists of extracting from the Poisson equation components of the 

second order equation for the electric field using the equations of mass transfer of com- 
ponents. Substituting in the electrohydrodynamic system this equation for the Poisson 

equation stabilizes the numerical iteration algorithms in which at each iteration the 
hydrodynamic field determined in the preceding iteration is used for solving the above 
equation for the electric field and, then, the obtained in this manner electric field dis- 
tribution is used for determining the new hydrodynamic field, in particular the concen- 

tration of ionized components. Note that this iteration algorithm which involves separ- 
ate determination of the electric and hydrodynamic field parameters at each iteration 

is unstable when applied to the problem in its initial formulation. A transformation of 

this type was used in [4] for deriving numerical solutions in the case of a weakly ionized 

gas. 
The proposed transformation makes it possible to simplify also the asymptotic solut- 

ion of the problem at the limit E 3 0 . It is shown below that in a specific region of 

potentials of the body surface a uniformly valid solution of the problem can be obtain- 

ed from equations that are asymptotically exact throughout the flow region, as e - 0 , 
From this point of view the proposed iteration algorithm yields in this case already in 

the first iteration an asymptotically exact solution. 

This device, here called the method of separation, is used below for solving tne one- 

dimensional problem of the electric probe in a moving or quiescent weakly ionized 
three-component gas of constant or variable properties. The method of separation mak- 
es possible the linearization of this problem and the derivation of explicit fOrm.IlaS for 

the linear sections of the ion and electron characteristics. 

1. s t a t e m e n t o f t h e p r o b 1 e m. We shall investigate the steady 
flow of a chemically reacting partly ionized multicomponent heat conducting mixture 

of gases witi different diffusion properties surrounding conducting bodies in the absence 
of external magnetic field. The magnetic field induced by internal currents is small 
as a relativistic effect. For simplicity we assume that the ionization of gas is moderate. 

i. e. sufficienuy small for the presence of ionized components not to affect to any ex- 
tent the flow of neutral components (complications arising in the extension to the gen- 

era1 case are considered at the end of Sect. 2). This means that the order of magnitude 

of the degree of ionization must not exceed a few percent. Hence the fields Of all Tan- 

titia related t0 the gas as a whole, such as temperature, pressure, and mean mass vel- 
ocity and, a-, the fields of concentration and neutral component diffusion fluxes, can 
be determined by solving the corresponding problem without ZtllOwaUCe for iOUizatiOU, 
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and as formulated here, are assumed known. The problem, thus, consists of the det- 
ermination of concentration and diffusion fluxes of ionized components, and of the ele- 
ctric field. For simplicity the temperature of all components is assumed to be the tame. 

We assume the determining system to consist of equations of conservation of mass 
of ionized components, the Stefan -Maxwell equations for ionized components [5], 
and of Maxwell equations for the electric field, In dimensionless form this system is 

+ div Jc = Dim; (i = 1,. . . , M) (1.1) 

edivE”=n 2 xkk.zk, IT’=_ -V,$ 
k=l (1.3) 

Re = aov,&, Di = 
WiO’ L%, 

no , E = 4nEiLa 

Here and below ci and s1 are the mass and molar concentrations, respectively; 
Ji, E, and &I* are, respectively, the dimensional numerical diffusion flux, elec- 
tric field, and the coefficient of thermal diffusion; 2s is the charge number: P, v, 
Wi’, T, P, ailand n are, respectively, the dimensionless density, mean mass veloc- 
ity, numerical formation rate of the i -th component in a unit volume as the result 
of chemical reactions, temperature, pressure, drag coefficients, and total numerical 
concentration, all normalized with respect to related characteristic values (the latter 
denoted by the zero subscript); mi is the mass of a particle of the i - th kind norm- 
alized wtth respect to the quantity p. I no; k is the Boltzmann constant: e is the 
electron charge: L is the characteristic scale of the problem, N is the total number 
of components in the mixture; the first &I numbers are assigned to ionized components. 

The boundary conditions for the system of Eqs. (1.1) - (1.3) are formulated as foll- 
ows. At the body surface which is assumed to be perfectly absorbing and catalytic, 
the concentrations of ionized components vanish 

xi = 0 (i = I, . . ., M) a. 4) 

Away from the body in the stream the concentration of ionized components tends 
to that in the unperturbed gas 
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(1.5) 

(Owing to the asymptotics of the considered equations, the unperturbed gas at infinity 
is electrically neutral [6] ). 

To close the problem we need one more boundary condition for Eq. (1.3), namely, 
to specify (explicitly or implicitly) the potential of the body surface relative to infin- 
ity. This boundary condition is usually selected on grounds of convenience, taking 
into account the properties of the algorithm chosen for solving the problem. 

Thus, the electric current density distribution at the surface was specified, [7], in 
[8] it was the ratio of densities of the ion and electron diffusion fluxes, the magnitude 

of the ion diffusion flux in [Q], intensity of the electric field at the body surface in 
[4], and in [lo] it was the body surface potential relative to infinity. In problems of 
flow of nonionized gas around nonconducting bodies the condition of absence of current 
to the wall was specified in [ll], which corresponds to the so-called problem with the 
floating potential. 

For reasons that will become clear late& it is convenient in this problem to specify 
this boundary condition formally as the linear combination of diffusion fluxes of ion- 

ized components to the body surface (the zero subscript at dimensionleu diffusion flux- 

es are omitted) 

xkhkj = a for Y =1; 0 
k=M+l 

(1.6) 

where a is a function specified at the body surface and y is a coordinate normal to 
that surface. 

The latter condition can be considered as an extension of the boundary condition 

used earlier in [S] in the numerical solution of equation ofthe Debye layer, Having 

solved problem (X.1) - (1.6) we can determine the surface potential distribution that 
corresponds to the given function a . Note that the boundary condition (1.6) has no 

physical meaning on its own. Its introduction is a formal device for simplifying thesub- 

sequent analysis of the problem. In the case of one-dimensional problems parameter 
CC at the last stage of solution is expressed in terms of surface potential, and all res- 
ults are reduced to conventional form which includes the voltampere characteristic. 

2. The electric field equation. For G<1, whichis a 
typical situation, Eq. (1.3) is inconvenient for determining the electric field E”, 

since the term with that field contains the small parameter. When the iterative num- 
erical algorithm is used for obtaining two separate solutions of the equation at each 
iteration, the iteration process is divergent because the presence in the right-hand 
side of the eqution of the large parameter 8-l that leads to the unavoidable error 

in the calculation of the sum xlzl + . . . + ZMZM in the preceding iteration, 

To overcome this difficulty it is necessary to solve simultaneously linearized equatiofis 
at every iteration which requires considerable computer time, For example, tile det- 
ermination of electrical effects in the neighborhood of a conducting sphere in a quies- 
cent weakly ionized gas was carried out in [lo] by solving simultaneously the lineariz- 
ed equations by matrix runs on the computer. 
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To avoid the indicated difficulty it is necessary to derive for the electric field a 
new equation which should be unaffected by perturbations of ionized component con- 
centration. For this we eliminate in the determining system of equations the concen- 

tration of one of the ionized components (e. g., the number M component), We de- 

fine in Eq. (1.3) the quantity zM as 

M-I (2.1) 

and substitute this expression into formula (1.2) with i = M. Eliminating in tne 

obtained formula vxk (k = 1, . . ., k? - 1) using the respective transport equat- 

ions we obtain for the electric field the equation 

k=l k,=l 

9, $, Akjxkjj (zk - zj) + f, cki?k v In p + f, xkz;iZkT v h T 

j =I k=l k=l k=l 

(2.2) 

E = - V$ 

The determining system of equations thus contains now Eqs. (1. l), Eqs. (1.2) with 

i#Jf , and Eqs. (2.2). The quantity 2~ which appears in the equations must 

be replaced by its expression (2.1). The corresponding transformation of boundary 

conditions (1.4) -(l. 6) for this formulation of the problem is obvious: 

at the body surface 

xi==0 (i=l,...,M-I), -- jzl ?GJjv ,=$+, xkhkj = 01 
(2.3) 

div E = 0 

and away from the body 

Xi --f Xim (i = 1, . . . . M-l), divE+O (2.4) 

The Stefan - Maxwell equations in the case of a weakly ionized three-component 

gas assume the form of the Fick law. By substituting these into the equations (1. 1) of 
conservation of mass of components, it is possible to eliminate from the direct solut- 
ion of the problem the diffusion fluxes, In that case the new equation for the electric 
field is derived by combining the equations of ion and electron diffusion [4], and not 

the equations of transport. The use of that equation instead of the input Poisson equat- 

ion makes possible the separation of.linearized equations at each step of the iteration 
process, and solve these (in the case of one-dimensional problems) by a scalar run 

through. Examples of numerical algorithm construction were considered in [4]. We 
shall only mention here that it is convenient to begin the iteration process by solving 
the equation for the electric field, specifying as the initial approximation for the ion 
and electron concentration the quasi-neutral solution (see Sect. 3). The proposed al- 
gorithm does not require any considerable computer time, and is effective in a wide 
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range of values of parameter E , including its very low values. 

Note that Bq. (2.2) is valid also in the general case of multicomponent mixtures 
ionized to an arbitrary degree. It must then be included in the over-all hydrodynamic 
system with pondecomotive forces, and the Stefan- Maxwell equations (1.2) must be 
written for all components of the mixture, 

3. Asymptotic analysis of the problem in the 
case of small Debye radii. Equation (2.2) contains a small paramet- 
er at higher derivatives, and the problem stated above may as a whole be classified as 
singularly perturbed. The first term of the external asymptotic expansion in the small 
parameter of solution of this problem is defined by the quasi-neutralsystem of equations 

which can be obtain from the input system by setting E I=: 0. Equation (2.1) assumes 
the form of the algebraic condition of qu~i-neutrality, while Eq. (2.2) becomes 

N N iv 

VCP E T I!$ IT AkjxJj (z/t* - Zj*) + T kzl c~z~*V In p + 
j=l k==l 

M 

x skzk,“L;k= VT, 
k=l 

(3.1) 

where the zero superscript at the dimensionless potential has been omitted, 
The form of remaining equations of the system remains unchanged for E = 0 . 
Close to the surface of the body in the stream there is an inner region in which the 

external solution is invalid. In the considered case of zero concentration of ionized 
components on the body surface the existence of such region is indicated by the singul- 

arity of the external solution (3.1) at the body surface. We shall call this inner region 

the Debye boundary layer (DBL). 

Several modifications of the method of inner and external expansions are used for 

the derivation of asymptotic solutions for the considered problem in a wide range of 

the body surface potentials [l, 23. Here, another asymptotic method valid in the reg- 

ion of body surface potentials that correspond to small parameters 01 is developed and 

applied. 
To simplify the exposition we limit the analysis to one-dinensional problems such 

as, for instance, that of hypersonic flow of ionized gas in the neighborhood of a stream- 
line passing through the leading stagnation point of a blunt body, the problem of a 

conducting sphere in a gas at rest, etc. 
When the concentration of M components is excluded, the system of determining 

equations is , 
+$(raJi)'=Diwi' (i=l,...,M) (3.2) 

(3.3) 
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e - 
n [& (reE)‘]‘S 3 (r%)’ ($ t c*q + MT) - g 5 Lq.zka = (3.4) 

k=x k==l 

9, f , AkjjCkJj (Zk - zj) + t c$k h’ p + 2 z,$-z$kT 111’ T 
j=lk=l k=l k=l 

M-l 

'M++ r: 
xkzk 

k-1 

(3. 5) 

where r = 1 + y and the prime denotes differentiation with respect to y . The 

boundary conditions (2.3) and (2.4) now assume the form 

on the body 

Xi 

- 

(3. 6) 

(3.7) 

E'+ 26 = 0 (3.8) 

and at infinity 

Xi --t xi_ (i = 1, . . ., M - 1) (3. 9) 

r-2 (9E) --t 0 (3.10) 

We solve Eq. (3.4) for E / T and substitute the obtained expression into the 

transport equation (3.3). This yields 

N N 

xi’ zzz - Ji Iz XkAik + Xi 
c 

A:J, - I& In’ p - KTi In’ T + (3.11) 
k=l k=l 

+(r’E)‘xi [!$* (+kCk$ +ln’T)- z+] + 
k=l 

where 

[$ (r2E)‘]’ (i = 1, . . . , M - 1) 

Aij* =! A.. - I3 zi* k$l &jxk (zk - Zj) 

Kpi = Xi - Ci + XjZi* 5 ckzk 
k=l 

KT~ = -xi zi* ii x,z,ZkT) 
k=l 
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Note that now the terms which define the contribution of the electric field to the 
system of Eqs. (3.21, (3.5), and (3.11) contain the coefficient 8. Assuming that the 
considered dimensionless quantities are of order unity, we omit these terms, Equations 
(3.2) remain unchanged and Eq. (3.5) assumes the form the quasi-neutrality condition 

(3. 12) 

while Eqs. (3.11) become 

q’ = - Ji kilxk& j- Xi i &*Jk - Kpi In’p - KTI In’ T 
k=l 

(3. 13) 

(i = 1,. . .,M- 1) 

Formulas (3.13) are the quasi-neutral Stefan - Maxwell relationships [ll]. Their 
structure is the same as that of corresponding relationships for a mixture of electrically 
neutral components. 

The input problem (3.2) - (3.10) is thus divided into two: the quasi-neutral prob- 
lem (3.2). (3.121, (3.131, (3.61, and (3.9) for the determination of concentrations 
and diffusion fhxes of ionized components, and the problem of electric field detelmin- 
ation using the known quasi-neutral solution. These problems can be solved successiv- 
ely. 

TO investigate the validity of such division it is necessary, first of all, to estimate 
the difference between the quasi-neutral solution for concentrations and diffusion flux- 
es of ionized components and the exact solution of the input problem. Then there is 

the error of the electric field determination by Eq. (3.4) due to the error in coeffici- 
ents resulting from the substitution of the quasi-neutral solution for ionized components 
for the exact one. Hence the latter must be estimated and parameters such that would 
nullify its effects must be found. 

First, let us consider the closeness of the quasi-neutral solution for concentrations 

and diffusion fluxes of ionized components to the exact one. For this it is necessary 
to estimate the effect of terms that are proportional to (5 and omitted in the transfor- 

mation of (3.5) and (3.11) to (3.12) and (3.13). These terms may be essential if the 
assumption about the order of the dimensionless quantities being equal unity does not 
hold. Becuase of this a special investigation is required in the DBL region. 

Depending on the body surface potential two cases are possible: (1) for moderate 
surface potentials (CJ, < 0 (In e-l)) the Debye layer can be defined by a single as- 

ymptotic expansion [S], and (2) for high surface potentials (cp, > 0 (in e-l)> the 
Debye Layer has a complex structure (consisting of several boundary layers) and cannot 
be defined by a single asymptotic expansion E121. For purposes of this paper of inter- 

est is the first case, and will be considered here. Unlike in[6], parameter a will not 

be assumed fixed. 
Let us determine the order of quantities in the DBL. We denote the order of mag- 

nitude of the electric field by Ed and the characteristic scale of the DBL by 6 . The 
order of magnitude of ionized component concentration in the DBL is also equal 8. 

We assume the quantity 
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jl Xkf (0) Zk2 

calculated from the quasi-neutral solution is finite and nonzero. 
In the DBL the first term in the left-hand side of Eq, (3.4) must be of the same 

order as the last, hence 6 = 0 (8’1~). The thickness of the DBL determined in this 
manner is considerably smaller than all characteristic dimensions of the problem, in 

particular smaller than the viscous boundary layer thickness, 

We seek the solution of mass conservation equations (3.2) of components in the 
Debye layer in the form of inner asymptotic expansion of the form 

where yd = YE-‘!” is the prolate DBL coordinate. The substitution of this expansion 
into (3.2) yields 

Ji = Jli + ~“8 IJ,i (0) + yd (DiU’i’ (Xi = 0, y = 0) - 2Jli)I + (3.14) 

0 (&‘:J) (i, j = 1, . . ., M) 

where J1 i and J2i (0) are constants that are determined by the joining with the 
external expansion. In deriving this expression we assumed for definiteness that at the 

body surface the normal component of mean mass velocity was zero, However all sub- 
sequent reasoning is valid also in the case of blowing or suction. Note that since form- 

ulas for the diffusion fluxes in the Debye layer (3.14) contain only terms of order zero 
and unity with respect to yd which have to be joined, the external solution for diff- 
usion fluxes of ionized components remains valid also in the Debye layer with an acc- 

uracy to terms of order a’/* . These formulas, moreover, show that the diffusion flux- 
es vary across the Debye layer by a quantity of order e’/* . It will be readily seen 

that the variation of drag coefficients and of neutral component concentration over the 
Debye layer is also of order &‘/a. 

Equation (3.4) may be written in the form 

5 (r2E)’ (+ 2 c,& + h ‘T) - 
k=l 

(3.15) 

$&kzka = tt 
j=l k=l 

hk jxkJj @k - zj) + 2 ckzk h’ p + 

k=l 

E’h?& a + 0 (e’y $18 

where the estimate of the value of each term in the Debye layer appears under it, 
From this it is possible to find the order of magnitude of the electric field in the DBL 



318 M. S. Benilov and G, A. Tirskii 

Below we consider the case of 0 (u) > ~‘!a. All subsequent reasoning is al- 
SO applicable to the opposite case but it is then necessary to substitute in the estimates 
8% for a. 

It is interesting to estimate the separation of charges in the Debye layer, i, e, the 

ration of the right-hand side of Eq. (3.5) to terms in the left-hand side. Since in the 
Debye layer that ratio is a , the separation of charges in the DBL is insignificant for 
small a. When a is of order unity the charge separation is also of that order, 

We use the derived above estimates for simplifying problem (3.4), (3.8), (3.10) 

for the electric field. Note that the second term in the left-hand side of Eq. (3.15) 
for the Debye layer has an order of magnitude of e’h relative to the first and last 
terms. Hence that term can be omitted in the Debye layer. In the quasi-neutral re- 
gion the order of that term relative to the last is E. Thus the second term in the 
left-hand side of Eq. (3.15) is uniformly small relative to the last and can be omitted 
throughout the flow region. The third and fourth terms in the left-hand side of IQ. 
(3.15) are similarly uniformly small relative to the last one. Hence Bq, (3.4) can be 
written, with an error that is uniform throughout the flow region, in the form 

k -=I 

Since the second term in the left-hand side of the boundary condition is of order 
&VI relative to the first, it can also be omitted. Boundary condition (3,8) then ass- 

umes the form 
E’=O for y=O (3.17) 

We pass to the estimate of terms omitted in Eqs. (3. 5) and (3. 11). The left- and 

right-hand sides of Eq. (3.5) are, respectively, of order unity and e in the quasi-neu- 
tral region, and E’h and a&‘!* in the WL. The left-hand side of Eq. (3.11) is of 

order unity in the quasi-neutral region and in the DBL, the penultimate term in the 

right-hand side is of order E and ae'% and the last term in the right-hand side is 

of order E and CL in the quasi-neutral region and in DBL. respectively. Thus the 

penultimate term in the right-hand side of (3. 11) is uniformly small and can be omitt- 
ed throughout the flow region. The disregard of the last terms of B@. (3. 5) and 

(3.11) results in an error of order &‘/a in the concentration of ionized components. 
The error in concentration derivatives is of order 8’1%~ in the quasi-neutral region 

and of order a in the Debye layer. 
Thus the neglect in Bqs. (3. 5) and (3.11) of terms proportional to e results in a 

relative error of order a in the concentration of ionized components and of their der- 

ivatives in the Debye layer. This error does not affect the diffusion fluxes of ionized 
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components, since these quantities in (3.14) are determined for the Debye layer by the 
external expansion with an accuracy to terms of order ~‘/a . Hence the error in diff- 

usion fluxes it uniformly small and of order ~‘1% The relative error in the concen- 

tration of ionized components is uniformly small for small a. 

Finally, we estimate the error consequent to the substitution in Eq. (3.16) of the 
quasi-neutral solution (denoted below by an asterisk) for concentrations and ionized com- 

ponent diffusion fluxes for the exact one, Obviously a uniformly small error of order 
f~‘/tcc will appear in the right-hand side. Let us consider the left-hand side of that 

equation, namely, 

M 

_p_+_~ [zk*E + 0 (e’kt) E] zk2 
k=l 

E 1 l?‘lVl 

a a us 

where the exact solution for ionized component concentration is represented in the form 
of the quasi-neutral solution and the corrections are of order ae’lr Under each term 
appears the estimate of its order of magnitude in the quasi-neutral region and in the 

Debye layer, respectively. 
The error arising in the left-hand side is evidently of order cc in the Debye layer 

and of order e%z in the quasi-neutral region. This error is uniformly small for small 

a . 
Thus for small E and a the solution of the input problem (3.2)- (3.10) can be 

obtained in two stages. In the first stage concentrations of the ionized components 
and their diffusion fluxes are determined by the solution of the quasi-neutral problem 

(3.2), (3.12), (3.13), (3.6), (3.7), (3.9). That solution can be determined by the 
known methods of solving problems of gasdynamics of multicomponent neutral mixtur- 
es. At the second stage the linear equation (3. 16) with boundary conditions (3,17) and 
(3.10) is solved, and the electric field distribution is determined. By integrating the 
latter it is possible to determine the body surface potential that corresponds to a given 

a . The advantage of such separation over the direct solution of the input problem 
is evident. 

It is important to note that for a = 0 the quasi-neutral solution for ionized 
components becomes exact as E + 0. The substitution of the quasi-neutral solut- 
ion into Eq. (3.16) is thus in essence a linearization with respect to a . Note that 
in the absence of convection such linearization is valid for any, and not only for small 
values of parameter t [13]. The convenience of the introduction of the formal bound- 
ary condition (1.6) becomes clear. 

As indicated above, the condition of smallness of e is satisfied in the majority 
of cases encountered in practice, while the condition of smallness of a means the 
imposition of a limit on the body surface potential. 

4. E x a m p 1 e. We shall apply the described method to the one-dimensional 
problem of electric probe in a three-component gas containing positive singly charg- 
ed ions of one kind, electrons, and neutral particles of one kind. The degree of gas 
ionization is assumed weak, so that the effect of collisions between charged particles 
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is small in comparison with their collisions with neutral particles and can be neglected, 
The problem of a probe at the stagnation point of a blunt body in a hypersonic stream 

of weakly ionized gas [14] and, also, the problem of a spherical probe in a quiescent 
weakly ionized plasma of constant or varying properties belong to this class. We negl- 
ect for simplicity the thermal - and baro-diffusions and, also, assume that homogen- 
eous chemical reactions are frozen and that recombination takes place only on body 

surface. The determining system of equations (1.1) - ( 1.3) is in this case of the form 

Re puxj’ + r-s (+Jj) = 0 (j = i, e) (4. 1) 

Jj==-&(-xz;+xjzj~) 
jn 

(i = i, e) 

w-a (raE)’ = p (Xi - X8) (4. 3) 

where the subscripts i, e, and n denote ions, electrons, and neutral particles, respec- 
tively, and the boundary conditions are ( a is a specified quantity) 

Y = 0, zi = z6 = 0; J,A, - J,A,, = a (4.4) 

Y-W, =i - x,* xe + xm 

Problems of this type were considered in a number of publications [I - 33. 
Let US find the quasi-neutral solution for the concentration and diffusion fluxes of 

ions and electrons. Assuming that the ratio of resistance coefficients of ion-neutral 

and electron - neutral particle is constant, for the quasi-neutral concentration of char- 

ged particles we obtain the diffusion equation with the obvious boundary conditions 

Re pu.?z’ - r-2 (+A,-‘2’)’ = 0, z = ~5 = xer Aa = (Arm + Aen) I2 (4.5) 

y =o , r=o; y--too, 2-+5ca 

Solution of that problem can be expressed in quadratures 

q 

C(Y) = Re puA$) dq 

0 0 

The quasi-neutral diffusion fluxes of ions and electrons are 

(4. 6) 

(4.7) 

where the subscript w denotes the respective quantities at the surface of body ( the 

probe). 
We pass to the determination of the electric field. In the considered particular 

case ~q. (3.16>, after the substitution in the right-hand side of formulas (4.7) for 

quasi-neutral diffusion fluxes of ions and electrons, assumes the form 
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(4.8) 

and the boundary conditions are of the form (3.17) and (3.10). Application of the 
method of separation to this problem shows that for smallaand a the solution of the nonlinear 

input problem(4.1)_(4.4)canbe obtained in two stages each of which involves the solut- 
ion of linear equations. At the first stage the linear problem (4.5) is solved and the 

profile of charged particle concentration is determined. After the determination of 

conc~~ation by formulas (4.7) it is possible to obtain the profiles of ion and electron 

fluxes. At the second stage the electric field profile is determined from the solution 
of the linear boundary value problem (4.8), (3.17), (3.10). By integrating the obtain- 
ed profile it is possible to determine the potential distribution corresponding to the 

specified a . The body snrface potential relative to infinity is deftned by formula 
v) 

[p,= E~Y 
s 

(4.9) 

0 

Let us consider the problem of derivation of the ion and electron characteristics, 
i. e. the dependence of density of the ion and electron diffusion fluxes to the body sur- 
face on its potential. 

Exact characteristics are obtained by solving problem (4. I) - (4.4) for various 
values of a-; each solution defines a single point of the ion and electron characteris- 

tics. For constructing sections of characteristics corresponding to the region of small 

a we use the proposed method of separation. For the diffusion fluxes of ions and elec- 
trons to the body snrface from (4.7) we obtain 

a 
ij=l+-g-, i,=i-+ 

2=w 

( JiwAinw 
ii=- ~ , i, = - J,WA,, 

=w 
I. 

w 1 
where ii and je are the flnx densities to the body surface of ions and electrons, 
respectively, normalized with respect to their values for a; = 0. 

To obtain the characteristics in explicit form it is necessary to express a in terms 
of the body surface potential (4.9). For this it is convenient to represent the solution 
for E in the form of superposition of two functions each of which is independent of a 

where functions El and E, are solutions of the following linear equations: 

(4.11) 

(4. 12) 

(4.13) 
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with boundary conditions (3.17) and (3.10). 
Using formulas (4.9) and (4.11) for expressing a in terms of rptu and substituting 

the obtained expression into (4.10) we obtain the sought characteristics in the form 

where the introduced coefficients qr and rps are independent of a and, consequen- 
tly, of the body surface potential. 

These formulas show in particular that the ion and electron characteristics pass 

through the point (cp,, = cpt, ji = i, = 1) to which corresponds a equal zero. 

The coefficients ‘pa and ‘pz must be determined by the solution of linear equat- 
ions (4.12) and (4,13), Let us determine these coefficients. The degenerate solution 
of Eq. (4.12) is 

T 4,- h,z h 

+=%- An - *cI I’-- xw $“,, 
> 

which has no singularities; the indeterminacy at point y = 0 can be revealed using 

the 1’ Hopital. rule. It does not, however, generally satisfy the boundary condition 

(3.17). Since the boundary condition is not satisfied by the derivative and not by the 

function itself and because the discrepancy is of order unity, the boundary layer in 
the first approximation with respect to E does not appear, and the degenerate solution 

is uniformly applicable. Hence 

(4.15) 

The solution of Eq. (4.13) may be represented as the sum of solutions of three simpler 

solutions 

Es = Es + 5 + E, (i’. 16) 

for each of which (3.17) and (3.10) represent the boundary conditions. The degener- 

ate solutions of Eqs. (4.16) for E, and E, have no singularities, and similarly to 

the degenerate solution of Eq. (4.12) are uniformly valid 

E,= 
A,Tz,’ T, 

r’AaWx “-7 1 
El = (4.17) 

The last of Eqs. (4.16) is a nonhomogeneous Airy equation. Its solution which satisf- 

ies boundary conditions (3.17) and (3.10) is provided by the expression [I51 
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E,=nT _(*)“‘[Gi(z)++(z)], %+g)liS (4,18) 

where (GL (I), Ai (z) are Airy’s functions. 

For calculating the potential we shall need the function 

.z 

e (2) = SC Gi (t) + & Ai (t) dt 

I 

whose asymptotics for large z is obtained by integrating the asymptotics of Airy fun- 
ctions [15] 

e(I)-1.587+~ln3+Ini-~f+... (4. 19) 

where the constant of integration is represented by the first two terms. It was obtained 
here by determining function 6 (2) numerically. 

Substituting (4.15) into the second of equalities (1,17) and taking into account the 
asymptotics of Airy functions [15], we find that solution E, is uniformly small in 
comparison with E,. Substituting the first of equalities (4.17) and (4.18) into the 

first of formulas (4.16) and integrating the obtained expression, after transformation 
with allowance for (4.19) we obtain the coefficient ‘pz 

‘Fn= (4. 20) 

Note that integrals in (4.15) and (4.20) are independent of E . Hence for a 
given distribution of velocity, density, and temperature of gas it is sufficient to cal- 

culate these integrals only once. 
The applicability of formulas (4.14) is restricted by the assumption of smallness 

of a. In other words these formulas are applicable when the surface potentials ‘pW 

are fairly close to ‘ps , i. e. 1 qpu, - tpl I < fpe . From the geometrical point of 
view formulas (4.14) define the linear approximation of ion and electron characterist- 

ics at point (rpr, 1). 
For obtaining exact ion and electron characteristics in a wide range of body sur- 

face potentials problem (4.1) - (4.4) must be solved numerically. But the general 
form of expected characteristics can be established using a relatively simple asympto- 
tic analysis. 

At considerable positive or negative surface potentials and fairly small F. the 

behavior of characteristics is approximately defined by the following formulas: 

cpw--+=, ji = 0, j* = 2; ‘pw + - 00, ji = 2% je = 0 

In the region of intermediate potentials in the case of homogeneous gas at rest a 
suitable asymptotic method was developed in [S]. Using an extension of that method 
to the considered here class of problems it is possible to show that the ion and elect- 
ron characteristics are odd relative to point PfJll 11 in the first approximation. In 
other words, in the first approximation the following identities are valid: 
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ii (91 - CPW) - 1 = - [ii (CPW - (P3 - 11 (4, 21) 

id (cpr- cpd - 1 = - be (cpw - CpJ - 11 

It follows from this that at point ‘pW = ‘pl the second derivatives of functions 
ii (Cpw) and ie (%) are zero. Hence in the neighborhood of point (rpr, 1) the ion 
and the electron characteristics are linear within terms of the order of e ‘ia , These 
linear sections are obviously completely defined by formulas (4,14), 

The expected ion and electron characteristics are diagrammatically represented in 

Fig. 1, where the dash lines show the relationships determined by formulas (4.14). 
The complete volt-amper characteristic, i. e. the dependence of electric current 

density at the probe surface on the potential of the latter can be determined form known 

ion and electron characteristics by the formula 

4 

A 
i (cp,) = i, (cp,) - pii (cp,) 

inw 

i=J 
hll,nwc (c=) 

edaw~, 

‘pr 
Fig. 1 

where J is the dimensional density of 
electric current to the surface, Taking 

into account formulas (4,21) it is possible 

to show that the volt-amper characteristic 
is in the first approximation odd with res- 
pect to point ((pLu = ~1, i = i - Aen, 

1 Ainw). In other words the identity 

is valid within terms of the order of &lJS 
Thus the zero value of parameter a corresponds to the center of symmetry of the 

volt-amper characteristic. 
When interpreting probe measurements the concentration of charged particles in 

the unperturbed plasma, 5, can be determined either by the magnitude of the ion 

saturation current or by that of the electron saturation current, or by the magnitude of 
the current which corresponds to the center of symmetry of the volt-amper character- 
istic. The plasma potential ‘pp relative to earth is readily determined by the formula 

where ‘p. denotes the potential at the intersection point of the tangent to the volt- 

amper characteristic drawn through its point of symmetry with the axis of potentials, 
and (pp and 'PO are dimensional quantities, 

It is interesting to consider the simplification of formula (4.22) in the case of prac- 

tical importance of high Reynolds numbers (Re + 00, Re e + 0) of the oncoming 
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stream, when the main input to integrals in formulas (4.15) and (4,20) is provided by 
the inviscid region. Retaining in these formulas terms of the order of Re’/’ and 

neglecting those of order unity and In(Re’/* a-1) , we have for this case 

A. -Am 
'PI= A"+A % 

in en 

Formula (4.22) now assumes the simple form: %I = ‘PO. Thus in the case of high 
Reynolds numbers the potential of plasma is equal to that determined by the intersect- 
ion point of the tangent to the volt-amper characteristic drawn through the latter cent- 

er of symmetry with the axis of potentials. 
All of the above reasoning is valid also in the presence of homogeneous chemical 

reactions, except that in this case the right-hand side of the diffusion equation (4.5) 

contains an inhomogeneous source term, and formula (4, 6) becomes inapplicable for 

quasi-neutral concentration of charged particles. There are no fundamental difficult- 
ies in taking into account thermal-and barn-diffusions, 

The expounded here method was used in [13] for the determination of electrical 
effects in the neighborhood of a conducting sphere in a quiescent two- temperature 

weakly ionized gas. The formulas derived there can be used for determining the temp- 
erature of electrons by the measured volt-amper characteristic. 

The authors thank G. A. Liubimov and V. V. Tolmachev for discussing this work 

and a number of useful remarks. 
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